Меню

Потенциальная энергия под водой

15 лучших примеров потенциальной энергии

Термин «потенциальная энергия» был придуман шотландским инженером-механиком Уильямом Рэнкином в 19 веке. Вскоре она стала одной из самых влиятельных переменных в формулах, описывающих нашу известную вселенную.

Что такое Потенциальная Энергия?

Потенциальная энергия — это энергия, накопленная внутри объекта. Эта накопленная энергия основана на состоянии, расположении или положении объекта.

В качестве альтернативы, вы можете представить ее как энергию, которая имеет «потенциал» для работы. При изменении состояния, расположения или положения объекта накопленная энергия высвобождается.

В то время как потенциальную энергию можно определить как скрытую энергию, накопленную в веществе в состоянии покоя, другая ее форма, называемая кинетической энергией, выражается веществом, находящимся в движении.

Типы потенциальной энергии

Существуют различные типы потенциальной энергии, каждый из которых связан с определенным типом силы.

Четыре основных типа:

  1. Гравитационная Потенциальная Энергия: энергия в объекте, когда она удерживается вертикально на некоторой высоте.
  2. Упругая потенциальная энергия: энергия, запасенная в объекте, когда он растягивается или сжимается.
  3. Потенциальная электрическая энергия: энергия в объекте за счет его заряда.
  4. Химическая потенциальная энергия: энергия, запасенная в химических связях вещества.

Каждый из них измеряется по-разному. Например, потенциальная энергия гравитации (PE) пропорциональна массе (m) объекта, силе тяжести (g) и высоте (h), на которой удерживается объект.

Чем больше масса объекта и чем выше он удерживается, тем больше будет его потенциальная энергия. Как и все другие формы энергии, потенциальная энергия измеряется в килограммах-метрах в квадрате за секунду в квадрате (кг м2 / С2 ) или Джоуле (Дж).

Чтобы лучше объяснить этот феномен, мы собрали несколько интересных примеров потенциальной энергии, которую вы видите в своей повседневной жизни.

1. Маятник

Тип: Гравитационная потенциальная энергия

В простом маятнике, груз прикреплен к концу почти безмассовой нити, которая качается вокруг оси. Когда маятник качается назад и вперед, энергия превращается между потенциальной энергией и кинетической энергией.

Груз несет на одном конце максимальную потенциальную энергию. По мере того как он под действием силы тяжести качается в самую нижнюю точку, его потенциальная энергия начинает преобразовываться в кинетическую энергию.

Потенциальная энергия груза достигает нуля (а кинетическая энергия достигает максимума) в самой нижней точке. К тому времени, когда он достигает другого конца, его кинетическая энергия полностью преобразуется в потенциальную энергию.

Процесс повторяется несколько раз, пока маятник не остановится. Поскольку часть энергии теряется в тепле и трении, вам нужна внешняя энергия, чтобы поддерживать движение маятника.

2. Камень на краю скалы

Тип: Гравитационная потенциальная энергия

Камень, расположенный на краю скалы, обладает потенциальной энергией, которая пропорциональна массе камня и высоте скалы. Если вы столкнете его с утеса, та же самая потенциальная энергия будет преобразована в кинетическую энергию.

Как вы можете видеть на изображении, тяжелый валун из песчаника опасно лежит на крутом склоне. Он обладает потенциальной энергией относительно склона, так как кажется, что он готов упасть в любой момент и скатиться на несколько метров в долину внизу.

3. Вода за плотинами

Тип: Гравитационная потенциальная энергия

Вода за плотиной гидроэлектростанции хранит огромную потенциальную энергию, так как она находится на гораздо более высоком уровне, чем вода с другой стороны плотины. Когда ворота таких плотин открываются, вода начинает падать, и накопленная потенциальная энергия преобразуется в кинетическую энергию, которая превращает турбины для производства электроэнергии.

Помимо производства электричества, водные плотины также строятся с целью контроля речного стока и регулирования наводнений.

4. Ветви деревьев

Тип: Гравитационная потенциальная энергия

Ветви деревьев обладают потенциальной энергией, потому что они могут упасть на землю. Чем тяжелее ветка и чем выше она находится к земле, тем больше потенциальной энергии она имеет.

Аналогичным образом, плод, свисающий с верхней ветви, также обладает некоторой потенциальной энергией. Когда плод падает, его энергия положения (потенциальная энергия) преобразуется в энергию движения (кинетическую энергию). И когда он ударяется о землю, кинетическая энергия преобразуется в тепловую энергию.

5. Американские горки

Тип: Гравитационная потенциальная энергия

Большинство американских горок используют гравитацию для перемещения вагонов по трассе. Большая цепь (прицепленная к нижней части вагонов) тянет вагоны на вершину первого холма, который является самой высокой точкой на американских горках. Как только вагоны достигают вершины холма, они освобождаются от цепи.

В американских горках работают две формы энергии: потенциальная энергия и кинетическая энергия. Одна из них преобразуется в другую на протяжении всей поездки, в то время как значительное количество энергии теряется из-за сопротивления воздуха и трения.

Потенциальная гравитационная энергия вагонов наименьшая в самой низкой точке американских горок и наибольшая в самой высокой точке.

6. Пружина

Тип: Эластичная потенциальная энергия

Энергия, накопленная в сжимаемых/растягивающихся объектах, называется эластичной потенциальной энергией. Чем больше объект может сжиматься/растягиваться, тем более упругая потенциальная энергия (U) у него есть. Она пропорциональна константе силы пружины (k) и длине струны сжатия/растяжения (x) в метрах.

Когда пружина растягивается или сжимается, она получает определенное количество потенциальной энергии. Это равно кинетической энергии, которая использовалась для растяжения или сжатия пружины.

Как только пружина высвобождается, потенциальная энергия снова преобразуется в кинетическую энергию. Однако процесс преобразования энергии не является полностью эффективным, так как значительная часть энергии теряется при нагревании и трении.

Читайте также:  Вода может стать источником

7. Лук и стрелы

Тип: Эластичная потенциальная энергия

Лук и стрела — это традиционная система оружия дальнего боя, которая состоит из упругого пускового инструмента (лук) и длинноствольных снарядов (стрел).

Лучник использует свои мышцы для приложения силы к струне, сгибая конечности назад. Сила, которую он оказывает на струну, известна как «вытягивание веса». Упругая энергия теперь является потенциальной энергией, которая может быть использована для запуска стрелки (путем освобождения струны).

Чем больше вы деформируете конечности, оттягивая их назад, тем больше вы увеличиваете накопленную потенциальную энергию. Очевидно, есть предел тому, сколько силы вы можете приложить, чтобы натянуть лук и сколько силы лук может выдержать без трещин.

8. Растянутые резинки

Тип: Эластичная потенциальная энергия

В тебя когда-нибудь стреляли из резинки? Если да, то вы знаете, что она содержит достаточно энергии, чтобы ударить в руку и вызвать боль.

Когда вы натягиваете резинку, вы вводите в нее определенное количество потенциальной энергии. А когда вы его высвобождаете, эта потенциальная энергия быстро преобразуется в кинетическую (двигательную) энергию.

9. Электрическая цепь

Тип: Электрическая потенциальная энергия

Когда мы соединяем электричество с электрическими цепями и устройствами, мы преобразуем энергию из одной формы в другую. Электронные схемы хранят (потенциальную) энергию и передают ее в другие формы, такие как свет, тепло или движение.

Подобно тому, как объекты под действием силы тяжести обладают гравитационной потенциальной энергией, заряды в электрическом поле обладают электрической потенциальной энергией.

Электрическая потенциальная энергия заряда показывает, сколько энергии он содержит. При приведении в движение электростатической силой эта накопленная энергия становится кинетической, и заряд действительно работает (что измеряется в джоулях).

Для любого заряда в электрическом поле его электрическая потенциальная энергия зависит от типа (отрицательного или положительного), количества заряда и его положения в поле.

10. Пища, которую мы едим

Тип: Химическая потенциальная энергия

Пища, которую мы едим, накапливает потенциальную химическую энергию. Когда она достигает нашего желудка, та же самая энергия превращается в другие формы, которые использует наше тело.

По мере того как связи между атомами в пище разрываются или ослабевают, происходит химическая реакция, образующая новые соединения. Энергия, генерируемая этой реакцией, поддерживает наше тепло, помогает нам двигаться и расти. Различные продукты питания содержат разное количество энергии.

11. Сухая древесина

Тип: Потенциальная химическая энергия

Сухие лесоматериалы содержат химическую энергию. Когда они сжигаются в камине, они высвобождают эту химическую энергию, которая в конечном итоге преобразуется в светлую и тепловую энергию. После химической реакции древесина превращается в новое вещество — золу.

12. Батареи АА

Тип: Химическая потенциальная энергия

Обычные батареи, такие как набор батарей типа АА, обладают потенциальной химической энергией, которая может быть преобразована в электрическую энергию.

Каждая батарея состоит из двух электродов (один катод и один анод). Между этими электродами находится гелеобразное вещество, называемое электролитом. Он состоит из заряженных частиц или ионов, которые соединяются с материалами электрода, вызывая химические реакции, которые позволяют батарее производить электрический ток.

Различные электроды и электролиты создают разные химические реакции, которые определяют эффективность батареи (сколько энергии она может хранить и ее напряжение).

13. Динамит

Тип: Химическая потенциальная энергия
Динамит является еще одним ярким примером химической потенциальной энергии. Он состоит из нитроглицерина (очень нестабильного вещества), сорбентов (таких, как порошкообразные оболочки или глина) и стабилизаторов.
При воспламенении нитроглицерин в динамите быстро взрывается, выделяя огромное количество азота и других газов вместе с теплом.

14. Бензин

Тип: Химическая потенциальная энергия

Когда вы заправляете свой автомобиль бензином, вы снабжаете его химической потенциальной энергией. Эта энергия содержится в различных химических веществах (в основном, органических соединениях, полученных путем фракционной перегонки нефти), которые составляют бензин.

Энергия высвобождается, когда бензин сжигается контролируемым образом в двигателе транспортного средства. Это потенциальное выделение энергии делает две вещи: часть энергии преобразуется в работу, которая используется для движения транспортного средства, а часть преобразуется в тепло, что делает двигатель автомобиля очень горячим.

15. Атомные электростанции

Тип: Ядерная потенциальная энергия

Ядерная потенциальная энергия — это потенциальная энергия субатомных частиц (таких, как протоны и нейтроны), присутствующих внутри ядра атома. Она удерживает протоны и нейтроны вместе, образуя ядро.

Когда два или более атомных ядра объединяются, чтобы сформировать большое ядро (ядерный синтез), высвобождается огромное количество энергии. Точно так же, когда одно ядро распадается на два меньших ядра (деление ядер), оно высвобождает большое количество энергии.

Атомные электростанции используют такие ядерные реакции (в основном ядерное деление урана и плутония) для получения тепла, которое затем используется в паровых турбинах для производства электроэнергии.

По сравнению с другими источниками энергии атомные электростанции используют меньшее количество сырья, имеют нулевой выброс, являются более мощными и эффективными.

Источник

Беседа 2. Потенциальная энергия

Коллега, о потенциальной энергии, пожалуйста, поподробнее.

Вы, мой друг, совершенно правильно интересуетесь важнейшей составляющей полной энергии.

Принято считать, что потенциальная энергия является частью общей энергии системы, зависящей от взаимного расположения материальных частиц, составляющих эту систему, и от их положений во внешнем силовом поле (гравитационное, электрическое поле).

Читайте также:  Вода под ковриком задних пассажиров

Силовым полем мы называем ту часть пространства, в каждой точке которой на помещенную туда материальную частицу действует определённая по величине и направлению сила.

Численно потенциальная энергия системы в данном её положении равна работе, которую произведут действующие на систему силы при её перемещении из этого положения в то, где потенциальная энергия равна нулю.

Коллега, энергией обладает только пробное тело в потенциальном поле или потенциальное поле тоже?

Для ответа на Ваш вопрос открываем БСЭ (Большая Советская Энциклопедия) и в разделе «Поля физические» читаем (дословно):
«Поля физические, особая форма материи; физическая система, обладающая бесконечно большим числом степеней свободы. Примерами полей физических могут служить электромагнитное и гравитационное поля. ».

Отсюда следует, что потенциальное поле является материальной средой. Значит, как и любая материальная среда, это поле обладает энергией (соответственно, и массой). Кстати, это подтверждается, к примеру, наличием в поле электромагнитных волн, которые являются колебаниями этой материальной среды.

Конкретные границы поля определить сложно, поэтому физики давно привыкли оперировать энергией, содержащейся в единице объёма, то есть – объёмной плотностью энергии потенциального поля (измеряется в Дж/м 3 ). Возьмём, к примеру, книгу Зильбермана «Электричество и магнетизм» (Наука, М., 1970) и на стр. 136 читаем (дословно):
«В плоском конденсаторе и вообще в однородном поле плотность энергии, т. е. энергия, содержащаяся в единице объёма, постоянна и равна полной энергии, делённой на объём».

Коллега, раз уж потенциальное поле является материальной средой, то оно должно характеризоваться конкретными параметрами, которые можно вычислить и измерить.

Вы совершенно правы. Мы уже выяснили, что электрическое (потенциальное) поле характеризуется таким параметром, как объёмная плотность энергии (далее – давление, Дж/м 3 или Н/м 2 ). Кроме этого, потенциальное поле характеризуется потенциалом и его градиентом – напряженностью поля. Причем, давление, потенциал и напряженность характеризуют потенциальное поле в данной его точке, независимо от наличия в этой точке пробного тела, ибо поле, как мы уже знаем, само обладает энергией и массой.

Если потенциальную энергию (WП, Дж) отнести к единичной массе (m, кг) или к единичному электрическому заряду (q, Кл), то получим гравитационный (v 2 = WП/m, Дж/кг) или электрический (U = WП/q, Дж/Кл) потенциалы.

Градиентом потенциала в данной его точке является напряженность поля:
— для гравитационного поля: g = – grad v 2 ;
— для электрического: E = – grad U (о знаке речь пойдет ниже).

Градиент (от лат. gradiens, род. падеж gradientis – шагающий), вектор, показывающий направление наискорейшего изменения некоторой величины от одной точки пространства к другой.

С удалением от центра поля изменяется не только потенциал, но и потенциальная энергия. И её градиентом является сила, которую мы называем силой тяготения.

Дополнение: Мы уже договорились, что градиентом гравитационного потенциала является напряженность гравитационного поля g = – grad v 2 . Помножив эти два параметра на массу, мы получим, соответственно, значение силы (F = mg) и потенциальной энергии (WП = mv 2 ). Следовательно, силу тоже можно считать градиентом энергии в данной точке поля (F = – grad WП).
Аналогично для электрического поля: напряженность электрического поля E = – grad U, сила F = qE, потенциальная энергия WП = qU. Значит, и здесь F = – grad WП.

Уравнение F = – grad WП показывает, что работа сил вдоль замкнутой траектории в потенциальном поле всегда равна нулю.

Коллега, какие единицы измерения наиболее приемлемы для вышеназванных параметров?

Очень хороший вопрос. СИЛА измеряется в ньютонах (Н = кг*м/с 2 ) или в Дж/м. Второй вариант записи более приемлемый, ибо сразу даёт нам указание на то, что сила является всего лишь ГРАДИЕНТОМ ЭНЕРГИИ (Дж/м). Это важно, ибо упрощает дальнейшее понимание физических процессов. Кстати, это касается не только силы, но и таких параметров, как давление и потенциал.

ДАВЛЕНИЕ измеряется в Н/м 2 или в Дж/м 3 . Здесь тоже более приемлемым является второй вариант записи, ибо сразу указывает нам на ОБЪЁМНУЮ ПЛОТНОСТЬ ЭНЕРГИИ (Дж/м 3 ).

ПОТЕНЦИАЛ измеряется в м 2 /с 2 или в Дж/кг (для гравитационного поля) и в (кг/Кл)*( м 2 /с 2 ) или Дж/Кл (для электрического поля). И здесь более приемлемым является второй вариант записи, ибо сразу указывает на значение потенциальной энергии, отнесенной к единице массы (Дж/кг) для гравитационного поля или отнесенной к единице электрического заряда (Дж/Кл) для электрического поля.

И наконец, коллега, давайте рассмотрим, как определяется значение потенциальной энергии.

Пожалуй, теперь мы готовы решать и эту проблему. Значение потенциальной энергии определяется двумя способами:
— упрощенный (приближенный) – для однородного поля;
— общий (истинный) – для неоднородного поля, которое нас реально и окружает.

Потенциальное поле можно условно считать однородным, если вектор напряженности во всех его точках имеет одно и то же значение и направление. К примеру, для гравитационного поля это правило можно применить только у поверхности Земли на небольшом её участке (скажем, в лабораторном опыте). В этом случае для упрощения расчетов значение потенциальной энергии пробного тела на поверхности Земли условно принимается равной нулю, а её значение в любой другой точке определяется из уравнения:

Читайте также:  Ребенок выпил воду с содой опасно ли

WП = mgh, Дж,
где g – напряженность гравитационного поля (Н/кг), а h – вертикальное расстояние (м) от поверхности Земли до пробного тела массой m (кг).

Здесь знак перед значением потенциальной энергии принципиального значения не имеет.

Коллега, но ведь это и есть наиболее распространенный способ определения потенциальной энергии.

К сожалению, многие учебники физики на этом и завершают определение потенциальной энергии. Но не все. Взять, к примеру, Общий курс физики Сивухина (Москва, МФТИ, 2005) или американский курс Физики в переводе под редакцией Ахматова (Москва, Наука, 1974).

Здесь рассматривается:
— уже известный нам способ определения потенциальной энергии пробного тела в однородном поле тяжести у поверхности Земли (том 1, стр. 144-145 первого источника и часть III, стр.152-157 второго источника);
— и общий способ определения потенциальной энергии для неоднородного поля (том 1, стр. 145-146 первого источника и часть III, стр.157-159 второго источника).

Общий способ расчета дает уже отрицательное значение потенциальной энергии:
— уравнение (25.6) W(U) = – GMm/r в первом источнике и
— уравнение W(Ur) = – GMm/r – во втором.

Отрицательное значение потенциальной энергии здесь объясняется следующим образом:
— в первом источнике (цитата): «Максимальной энергией притягивающиеся массы обладают при бесконечном расстоянии между ними. В этом положении потенциальная энергия считается равной нулю. Во всяком другом положении она меньше, т. е. отрицательна»;
— во втором источнике дано доказательство правильности уравнения W(Ur) = – GMm/r.

И действительно, свободно падающее к центру поля тело теряет свою потенциальную энергию, которая переходит в кинетическую. Значит, потенциальная энергия с уменьшением расстояния между центрами масс (M и m) уменьшается и, наоборот, с увеличением расстояния – увеличивается.

Учитывая, что в уже известном нам уравнении WП = – GMm/r символ радиуса находится в знаменателе, то предельно ясно, что с увеличением расстояния (значение радиуса стремится к бесконечности) потенциальная энергия увеличивается до… нуля. Такое возможно только в том случае, если потенциальная энергия во всяком другом положении отрицательна.

Вывод: потенциальная энергия для всех материальных частиц отрицательна.

Отсюда следует, что значение гравитационного потенциала v 2 = WП/m = – GM/r тоже отрицательно. И подтверждением этому является уравнение (3) в разделе «Тяготение» (стр. 772) Физического Энциклопедического Словаря или аналогичного раздела Большой Советской Энциклопедии.

Аналогично определяется значение потенциальной энергии и электрического потенциала в электрическом поле. Причем далее мы убедимся в том, что потенциальная энергия и её объёмная плотность (давление) ОДИНАКОВЫ и для гравитационного, и для электрического полей.

Коллега, теперь попробуйте записать Ваше высказывание в виде формулы.

Формулы пишут математики, а физики пользуются уравнениями. Необходимые уравнения здесь уже приводились. Однако попробуем, все же, обойтись пока без них, тем более – без «формул».

Для этого используем бытовые наблюдения, которые подсказывают: чтобы испарить воду, кипящую в чайнике, нужно сжечь некоторое количество дров или газа. Другими словами, нужно совершить работу. С помощью термометра можно убедиться, что температура кипящей воды и температура пара над ней одинаковы. Следовательно, одинакова и средняя энергия движения частиц в кипящей воде и в паре.

Вывод: тепловая энергия, передаваемая кипящей воде от топлива, преобразуется в энергию взаимодействия частиц испаряющейся воды. Значит, энергия связи частиц в кипящей воде меньше, чем в водяном паре. Но в паре эта энергия практически равна нулю, следовательно, энергия взаимодействия частиц в жидкости меньше нуля, т.е. отрицательна.

Коллега, Ваши доводы убедительны и примеры Вы приводите неопровержимые. Однако не все думают так же.

И здесь Вы совершенно правы. Для физиков проблем с пониманием сути и знака потенциальной энергии нет, ибо они гравитационное поле, в том числе и поле тяготения Земли, считают НЕОДНОРОДНЫМ. Для физиков напряженность гравитационного поля изменяется с расстоянием в квадрате: g = Gm/r 2 .

Однако математики так не думают. Для них гравитационное поле является ОДНОРОДНЫМ с неизменной напряженностью гравитационного поля (вроде этот параметр и не зависит от радиуса). Значение потенциальной энергии они определяют по упрощенной формуле W = mgh. Они не связывают h с радиусом поля, а считают его простым отрезком между двумя произвольными точками этого поля. Поэтому для них потенциальная энергия может принимать нулевое значение в любой понравившейся им точке. Нонсенс, но бывает и такое.

Но есть ещё и «физико-математики». Их мнение зависит от того, насколько они физики или математики.

Коллега, почему Вы считаете, что математики «тяготеют» к однородному полю?

В подтверждение этому открываем Краткий курс математического анализа (Бермант, Араманович, 2005) и на стр. 520 в разделе «Теория поля» читаем:
«Векторное поле называется однородным, если А(Р) — постоянный вектор, т.е. Ах, Аy и Az — постоянные величины.
Примером однородного поля может служить, например, поле тяжести
».

Теперь Вы и сами видите, что математики гравитационное поле называют «полем тяжести» и «всерьёз» считают его однородным. И это не просто безобидное заблуждение, ибо оно мешает нам осознать Природу гравитации. Однако, об этом мы поговорим немного позже.

Источник

Adblock
detector