- Почему вода обладает высокой теплоемкостью
- Удельная теплоёмкость воды, или почему мы такие, какие есть
- Удельная теплоёмкость воды
- Теплоёмкость воды и климат Земли
- Аномальные свойства теплоемкости воды
- Заключение
- Большая Энциклопедия Нефти и Газа
- Большая теплоемкость — вода
- Почему вода обладает высокой теплоемкостью
- Механическое действие воды
- Теплоемкость воды
Почему вода обладает высокой теплоемкостью
Большая теплоемкость воды. Удельной теплоемкостью воды называют количество теплоты, которое необходимо, чтобы поднять температуру 1 кг воды на ГС. Вода обладает большой теплоемкостью. Это значит, что существенное увеличение тепловой энергии вызывает лишь сравнительно небольшое повышение ее температуры. Объясняется такое явление тем, что значительная часть энергии расходуется на разрыв водородных связей, ограничивающих подвижность молекул воды, т. е. на преодоление упомянутой выше «склеенности» ее молекул.
Большая теплоемкость воды сводит к минимуму происходящие в ней температурные изменения. Благодаря этому биохимические процессы протекают в меньшем интервале температур, с более постоянной скоростью, и опасность нарушения этих процессов от резких отклонений температуры грозит им не столь сильно. Вода служит для многих клеток и организмов средой обитания, обеспечивающей им довольно значительное постоянство условий.
Большая теплота испарения воды. Скрытая теплота испарения есть мера количества тепловой энергии, которую необходимо сообщить жидкости для ее перехода в пар, т. е. для преодоления сил молекулярного сцепления в жидкости. Испарение воды требует довольно значительных количеств энергии. Это объясняется существованием водородных связей между ее молекулами. Именно в силу этого температура кипения воды — вещества со столь малыми молекулами — необычно высока.
Энергия, необходимая молекулам воды для испарения, черпается из окружения. Таким образом, испарение сопровождается охлаждением. Это явление используется у животных при потоотделении, а также при тепловой одышке у млекопитающих или у некоторых рептилий (например крокодилов), которые на солнцепеке сидят с открытым ртом; возможно, оно играет заметную роль и в охлаждении транспирирующих листьев. Большая теплота испарения означает, что отдача организмом даже больших количеств тепла сопровождается минимальными потерями воды, т. е. не обязательно ведет к его обезвоживанию.
Некоторые важные биологические функции воды
Большая теплота плавления воды. Скрытая теплота плавления — это мера тепловой энергии, необходимой для расплавления твердого вещества (в нашем случае — льда). Для плавления (таяния) льда необходимо сравнительно большое количество энергии. Справедливо и обратное: при замерзании вода должна отдать большое количество тепловой энергии. Это уменьшает вероятность замерзания содержимого клеток и окружающей их жидкости. Кристаллы льда особенно губительны для живого, когда они образуются внутри клеток.
Плотность и и поведение воды вблизи точки замерзания. Плотность воды от +4 до О °С понижается, поэтому лед легче воды и в воде не тонет. Вода — единственное вещество, обладающее в жидком состоянии большей плотностью, чем в твердом.
Поскольку лед плавает в воде, он образуется сначала на ее поверхности и лишь затем в придонных слоях. Если бы замерзание прудов шло в обратном порядке, снизу вверх, то в областях с умеренным или холодным климатом жизнь в пресноводных водоемах вообще не могла бы существовать. Лед покрывает толщу воды, как одеялом, что повышает шансы на выживание у организмов, обитающих в воде. Это важно в условиях холодного климата и в холодное время года, но, несомненно, особенно важную роль это играло в ледниковый период. Кроме того, находясь на поверхности, лед быстрее и тает. То обстоятельство, что слои воды, температура которых упала ниже 4°С, поднимаются вверх, обусловливает перемешивание воды в больших водоемах. Вместе с водой циркулируют и находящиеся в ней питательные вещества, благодаря чему водоемы заселяются живыми организмами на большую глубину.
Большое поверхностное натяжение и когезия воды. Когезия — это сцепление молекул физического тела друг с другом под действием сил притяжения. На поверхности жидкости существует поверхностное натяжение — результат действующих между молекулами сил когезии, направленных внутрь. Благодаря поверхностному натяжению жидкость стремится принять такую форму, чтобы площадь ее поверхности была минимальной (в идеале — форму шара). Из всех жидкостей самое большое поверхностное натяжение у воды. Значительная когезия, характерная для молекул воды, играет важную роль в живых клетках, а также при движении воды по сосудам ксилемы в растениях (гл. 13). Многие мелкие организмы извлекают для себя пользу из поверхностного натяжения: оно позволяет им удерживаться на воде или скользить по ее поверхности.
Вода как реагент. Биологическое значение воды определяется тем, что она представляет собой один из необходимых метаболитов, т. е. участвует в метаболических реакциях. Вода используется, например, в качестве источника водорода при фотосинтезе, а также участвует в реакциях гидролиза.
Некоторые важные с биологической точки зрения функции воды перечислены в таблице.
Источник
Удельная теплоёмкость воды, или почему мы такие, какие есть
Теплоёмкость воды (ТВ) — одно из важнейших для нашей планеты свойств воды.
Удельная теплоёмкость воды
Дадим этому термину краткое определение.
Теплоемкость вещества — это его способность аккумулировать в себе тепло. Измеряется эта величина количеством поглощаемого им тепла, при нагреве на 1°С. Например, теплоемкость воды — 1 кал/г, или 4,2 Дж/г, а почвы — при 14,5-15,5°С (в зависимости от типа почвы) колеблется от 0,5 до 0,6 кал (2,1-2,5 Дж) на единицу объема и от 0,2 до 0,5 кал (или 0,8-2,1 Дж) на единицу массы (граммы).
Теплоемкость воды оказывает существенное влияние на многие аспекты нашей жизни, но в этом материале мы сделаем акцент на ее роль в формировании температурного режима нашей планеты, а именно …
Теплоёмкость воды и климат Земли
По своему абсолютному значению теплоемкость воды достаточно велика. Из приведенного выше определения мы видим, что она существенно превышает теплоемкость почвы нашей планеты. Из-за такой разности теплоемкостей почва, по сравнению с водами мирового океана, значительно быстрее нагревается и соответственно быстрее остывает. Благодаря более инертному мировому океану колебания суточных и сезонных температур Земли не так велики, как были бы в случае отсутствия океанов и морей. Т. е. в холодное время года вода греет Землю, а в теплое охлаждает. Естественно это влияние наиболее ощутимо в прибрежных районах, но в глобальном усредненном измерении влияет на всю планету.
Естественно, что на колебания суточных и сезонных температур влияет множество факторов, но вода является одним из важнейших.
Увеличение амплитуды колебаний суточных и сезонных температур радикально изменило бы окружающий нас мир.
Например, хорошо всем известный факт — камень при резких температурных колебаниях теряет свою прочность и становится хрупким. Очевидно, что «несколько» другими были бы и физические параметры тела человека.
Аномальные свойства теплоемкости воды
Теплоемкость воды обладает аномальными свойствами. Оказывается, при повышении температуры воды ее теплоемкость уменьшается, эта динамика сохраняется до 37°C, при дальнейшем увеличении температуры теплоемкость начинает возрастать.
Заключение
В этом факте заключено одно интересное утверждение. Условно говоря, сама природа в лице Воды определила 37°C как наиболее комфортную температуру для организма человека, при условии, конечно соблюдения всех остальных факторов. При любой динамике изменения температуры окружающей среды температура воды тяготеет к 37°C.
Вот такая краткая история Теплоемкости воды 🙂
Источник
Большая Энциклопедия Нефти и Газа
Большая теплоемкость — вода
Большая теплоемкость воды имеет громадное значение в биологии, а именно: создаются благоприятные условия протекания биологических процессов в живых организмах в узких пределах температур 36 — 40 С, облегчается выравнивание температур между соседними тканями и клетками. [1]
Большая теплоемкость воды имеет громадное значение в биологии, а именно: создаются благоприятные условия протекания биологических процессов в живых организмах в узких пределах температур 36 — 40 С, облегчается выравнивание температур между соседними тканями и клетками. [2]
Большая теплоемкость воды сводит к минимуму происходящие в ней температурные изменения. Благодаря этому биохимические процессы протекают в меньшем интервале температур, с более постоянной скоростью, и опасность нарушения этих процессов от резких отклонений температуры грозит им не столь сильно. Вода служит для многих клеток и организмов средой обитания, обеспечивающей им довольно значительное постоянство условий. [4]
Большая теплоемкость воды способствует сохранению постоянной температуры организма человека, 60 — 70 % массы которого она ет), причем оптимальная теплоемкость воды находится в 36 — ЗГС. [5]
Благодаря большой теплоемкости воды и ее постоянному круговороту Мировой океан аккумулирует основное количество тепла, которое Земля получает от Солнца. Вода поглощает тепла на 25 — 50 % больше, чем суша. [6]
Например, большая теплоемкость воды может быть объяснена распадом ассоциированных молекул при нагревании. Так как распад этих молекул сопровождается поглощением энергии, то при нагревании воды теплота расходуется не только на повышение температуры, но и на распад ассоциированных молекул. [7]
Действительно, ввиду большой теплоемкости воды ее температура будет отставать от температуры воздуха. [9]
Не меньшее значение имеет и аномально большая теплоемкость воды , из-за которой в зимнее время массы воды медленно остывают, а летом постепенно нагреваются, являясь таким образом регулятором температуры на земном шаре. Поверхностное натяжение и плотность воды определяют высоту, на которую она может подниматься по капиллярам. Это свойство обеспечивает движение воды в стеблях растений и стволах деревьев, другими словами — их жизнь. [10]
Не меньшее значение имеет и аномально большая теплоемкость воды , из-за которой в зимнее время массы воды медленно остывают, а летом постепенно нагреваются, являясь, таким образом, регулятором температуры на земном шаре. [11]
Интенсивность охлаждения грунтов не соответствует коэффициенту их теплопроводности, что объясняется большой теплоемкостью воды и тем, что грунтовые воды передают верхним слоям почвы теплоту от ее глубинных вечно теплых слоев. Кроме того, в условиях болот в известной мере сказывается и теплота, получающаяся от разложения органических веществ. [12]
Содержимое сосуда нагревается более или менее равномерно и не слишком сильно из-за большой теплоемкости воды . [13]
Кроме того, перегрето и дно чайника; однако нетрудно убедиться, что этим эффектом можно пренебречь ввиду большой теплоемкости воды . [15]
Источник
Почему вода обладает высокой теплоемкостью
Под теплопроводностью понимается способность различных тел проводить теплоту во все стороны от точки приложения нагретого предмета. Теплопроводность возрастает по мере увеличения плотности вещества, потому что тепловые колебания легче передаются в более плотном веществе, где отдельные частицы расположены ближе одна к другой. Этому закону подчиняются и жидкости.
Теплопроводность определяется количеством калорий, проходящих в 1 сек. через площадь в 1 см2 при падении температуры на 1° на протяжении 1 см пути. По теплопроводности вода занимает место между стеклом и эбонитом и почти в 28 раз превосходит воздух.
Теплоемкость воды. Под удельной теплоемкостью понимается то количество теплоты, которое может нагреть 1 г массы вещества на 1 °. Это количество теплоты измеряется калориями. За единицу теплоты принимается грамм-калория. Вода воспринимает при 14—15° большее количество теплоты, чем другие вещества; например, количество тепла, потребное для нагрева 1 кг воды на 1°, может нагреть на 1° 8 кг железа или 33 кг ртути.
Механическое действие воды
Наиболее сильным механическим действием отличается душ, наиболее слабым — полные ванны. Сравним механическое влияние, например, душа Шарко и полных ванн.
Дополнительное давление воды на кожу в ванне, где столб воды не превышает 0,5 м, составляет около 0,005, или 1,20 атмосферного давления, а сила удара водяной струи в душе Шарко, направленной на тело с расстояния 15—20 м, равняется 1,5— 2 атмосферам.
Независимо от температуры применяемой воды, под влиянием душа наступает энергичное, расширение кожных сосудой немедленно после падения на тело водяной струи. Одновременно проявляется возбуждающее действие душа.
Для исследования механического действия морских и речных: купаний применима формула F=mv2/2, где сила F равняется половине произведения массы т на квадрат скорости v2. Механическое действие морской и речной волн зависит не столько от массы воды, надвигающейся на тело, сколько от скорости, с которой совершается это движение.
Вода как химический растворитель. Вода обладает способностью растворять различные минеральные соли, жидкости и газы, от этою усиливается раздражающее действие воды. Большое значение придается ионному обмену, происходящему между водой и телом человека, погруженным в минерализованную ванну.
При нормальном давлении (т. е. при нулевой температуре) один объем воды поглощает 1,7 объема углекислоты; при повышении давления растворимость углекислоты в воде значительно повышается; при двух атмосферах давления при температуре в 10° растворяются три объема углекислоты вместо 1,2 объема при нормальном давлении.
Теплопроводность углекислоты в два раза меньше теплопроводности воздуха и в тридцать раз меньше теплопроводности воды. Этим свойством воды пользуются для устройства различных газовых ванн, заменяющих иногда минеральные источники.
Источник
Теплоемкость воды
Вода, как и другие тела и вещества, способна поглощать теплоту, какое то время удерживать ее и излучать в окружающее пространство. Свойство тел (и веществ) поглощать то или иное количество теплоты называется теплоемкостью. При этом крупные тела поглощают теплоты больше, чем мелкие тела.
По способности поглощать и удерживать теплоту вода резко отличается от других тел и веществ. Для повышения температуры воды на 1°С требуется гораздо больше теплоты, чем для повышения на 1°С температуры какого либо другого тела или вещества. Такое явление объясняется тем, что молекулы воды образуют группы из двух, трех, четырех молекул. При нагревании воды теплота затрачивается не только на ускорение движения молекул, но и на разрушение таких групп молекул. Группы молекул воды
Поглощенную теплоту вода отдает в окружающее пространство гораздо медленнее, чем другие тела и вещества. Поэтому она долго сохраняет температуру, и водоемы замерзают гораздо позже наступления морозных дней и выпадения снега.
Высокая теплоемкость воды имеет большое значение в природе. Прежде всего она влияет на климат земного шара. Летом, например, вода в приморских местностях медленно нагревается, поглощает огромное количество теплоты и этим самым умеряет (снижает) летний зной. Зимой она возвращает поглощенное тепло и умеряет зимнюю стужу. Вот почему в приморских странах лето прохладнее, а зима мягче (не такая морозная), чем вдали от больших водных пространств.
В прудах, озерах и других водоемах в связи с медленным нагреванием воды и постепенной отдачей теплоты в окружающее пространство отсутствуют резкие перепады температуры, что благоприятно влияет на населяющих их живых организмов.
Высокая теплоемкость воды используется в быту, на производстве, в системах водяного отопления. Нагретая вода долго отдает теплоту, проходя по трубам отопительной системы.
Источник