Меню

Что такое гомеостатическая вода

Гомеостаз

Гомеоста́з (др.-греч. ὁμοιοστάσις от ὁμοιος — одинаковый, подобный и στάσις — стояние, неподвижность) — саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия. Стремление системы воспроизводить себя, восстанавливать утраченное равновесие, преодолевать сопротивление внешней среды.

Гомеостаз популяции — способность популяции поддерживать определённую численность своих особей длительное время.

Американский физиолог Уолтер Кеннон (Walter B. Cannon) в 1932 году в своей книге «The Wisdom of the Body» («Мудрость тела») предложил этот термин как название для «координированных физиологических процессов, которые поддерживают большинство устойчивых состояний организма». В дальнейшем этот термин распространился на способность динамически сохранять постоянство своего внутреннего состояния любой открытой системы. Однако представление о постоянстве внутренней среды было сформулировано ещё в 1878 году французским учёным Клодом Бернаром.

Содержание

Общие сведения

Термин «гомеостаз» чаще всего применяется в биологии. Многоклеточным организмам для существования необходимо сохранять постоянство внутренней среды. Многие экологи убеждены, что этот принцип применим также и к внешней среде. Если система неспособна восстановить свой баланс, она может в итоге перестать функционировать.

Комплексные системы — например, организм человека — должны обладать гомеостазом, чтобы сохранять стабильность и существовать. Эти системы не только должны стремиться выжить, им также приходится адаптироваться к изменениям среды и развиваться.

Свойства гомеостаза

Гомеостатические системы обладают следующими свойствами:

  • Нестабильность системы: тестирует, каким образом ей лучше приспособиться.
  • Стремление к равновесию: вся внутренняя, структурная и функциональная организация систем способствует сохранению баланса.
  • Непредсказуемость: результирующий эффект от определённого действия зачастую может отличаться от того, который ожидался.

Примеры гомеостаза у млекопитающих:

  • Регуляция количества микронутриентов и воды в теле — осморегуляция. Осуществляется в почках.
  • Удаление отходов процесса обмена веществ — выделение. Осуществляется экзокринными органами — почками, лёгкими, потовыми железами и желудочно-кишечным трактом.
  • Регуляция температуры тела. Понижение температуры через потоотделение, разнообразные терморегулирующие реакции.
  • Регуляция уровня глюкозы в крови. В основном осуществляется печенью, инсулином и глюкагоном, выделяемыми поджелудочной железой.

Важно отметить, что, хотя организм находится в равновесии, его физиологическое состояние может быть динамическим. Во многих организмах наблюдаются эндогенные изменения в форме циркадного, ультрадианного и инфрадианного ритмов. Так, даже находясь в гомеостазе, температура тела, кровяное давление, частота сердечных сокращений и большинство метаболических индикаторов не всегда находятся на постоянном уровне, но изменяются в течение времени.

Механизмы гомеостаза: обратная связь

Когда происходит изменение в переменных, наблюдаются два основных типа обратной связи, на которые реагирует система:

  1. Отрицательная обратная связь, выражающаяся в реакции, при которой система отвечает так, чтобы изменить направление изменения на противоположное. Так как обратная связь служит сохранению постоянства системы, это позволяет соблюдать гомеостаз.
    • Например, когда концентрация углекислого газа в организме человека увеличивается, лёгким приходит сигнал к увеличению их активности и выдыханию большего количество углекислого газа.
    • Терморегуляция — другой пример отрицательной обратной связи. Когда температура тела повышается (или понижается) терморецепторы в коже и гипоталамусе регистрируют изменение, вызывая сигнал из мозга. Данный сигнал, в свою очередь, вызывает ответ — понижение температуры (или повышение).
  2. Положительная обратная связь, которая выражается в усилении изменения переменной. Она оказывает дестабилизирующий эффект, поэтому не приводит к гомеостазу. Положительная обратная связь реже встречается в естественных системах, но также имеет своё применение.
    • Например, в нервах пороговый электрический потенциал вызывает генерацию намного большего потенциала действия. Свёртывание крови и события при рождении можно привести в качестве других примеров положительной обратной связи.
Читайте также:  Эйвон парфюмированная вода для тела

Устойчивым системам необходимы комбинации из обоих типов обратной связи. Тогда как отрицательная обратная связь позволяет вернуться к гомеостатическому состоянию, положительная обратная связь используется для перехода к совершенно новому (и, вполне может быть, менее желанному) состоянию гомеостаза, — такая ситуация называется «метастабильность». Такие катастрофические изменения могут происходить, например, с увеличением питательных веществ в реках с прозрачной водой, что приводит к гомеостатическому состоянию высокой эвтрофикации (зарастание русла водорослями) и замутнению.

Экологический гомеостаз

Экологический гомеостаз наблюдается в климаксовых сообществах с максимально возможным биоразнообразием при благоприятных условиях среды.

В нарушенных экосистемах, или субклимаксовых биологических сообществах — как, например, остров Кракатау, после сильного извержения вулкана в 1883 — состояние гомеостаза предыдущей лесной климаксовой экосистемы было уничтожено, как и вся жизнь на этом острове. Кракатау за годы после извержения прошёл цепь экологических изменений, в которых новые виды растений и животных сменяли друг друга, что привело к биологической вариативности и в результате климаксовому сообществу. Экологическая сукцессия на Кракатау осуществилась за несколько этапов. Полная цепь сукцессий, приведшая к климаксу, называется присерией. В примере с Кракатау на этом острове образовалось климаксовое сообщество с восемью тысячами различных видов, зарегистрированных в 1983, спустя сто лет с того времени, как извержение уничтожило на нём жизнь. Данные подтверждают, что положение сохраняется в гомеостазе в течение некоторого времени, при этом появление новых видов очень быстро приводит к быстрому исчезновению старых.

Случай с Кракатау и другими нарушенными или нетронутыми экосистемами показывает, что первоначальная колонизация пионерными видами осуществляется через стратегии воспроизведения, основанные на положительной обратной связи, при которых виды расселяются, производя на свет как можно больше потомства, но при этом практически не вкладываясь в успех каждого отдельного. В таких видах наблюдается стремительное развитие и столь же стремительный крах (например, через эпидемию). Когда экосистема приближается к климаксу, такие виды заменяются более сложными климаксовыми видами, которые через отрицательную обратную связь адаптируются к специфическим условиям окружающей их среды. Эти виды тщательно контролируются потенциальной ёмкостью экосистемы и следуют иной стратегии — произведению на свет меньшего потомства, в репродуктивный успех которого в условиях микросреды его специфической экологической ниши вкладывается больше энергии.

Развитие начинается с пионер-сообщества и заканчивается на климаксовом сообществе. Это климаксовое сообщество образуется, когда флора и фауна пришла в баланс с местной средой.

Подобные экосистемы формируют гетерархии, в которых гомеостаз на одном уровне способствует гомеостатическим процессам на другом комплексном уровне. К примеру, потеря листьев у зрелого тропического дерева даёт место для новой поросли и обогащает почву. В равной степени тропическое дерево уменьшает доступ света на низшие уровни и помогает предотвратить инвазию других видов. Но и деревья падают на землю и развитие леса зависит от постоянной смены деревьев, круговорота питательных веществ, осуществляемого бактериями, насекомыми, грибами. Схожим образом такие леса способствуют экологическим процессам — таким, как регуляция микроклиматов или гидрологических циклов экосистемы, а несколько разных экосистем могут взаимодействовать для поддержания гомеостаза речного дренажа в рамках биологического региона. Вариативность биорегионов так же играет роль в гомеостатической стабильности биологического региона, или биома.

Биологический гомеостаз

Гомеостаз выступает в роли фундаментальной характеристики живых организмов и понимается как поддержание внутренней среды в допустимых пределах.

Внутренняя среда организма включает в себя организменные жидкости — плазму крови, лимфу, межклеточное вещество и цереброспинальную жидкость. Сохранение стабильности этих жидкостей жизненно важно для организмов, тогда как её отсутствие приводит к повреждению генетического материала.

Читайте также:  Человек который ходит по воде кто он

В отношении любого параметра организмы делятся на конформационные и регуляторные. Регуляторные организмы сохраняют параметр на постоянном уровне, независимо от того, что происходит в среде. Конформационные организмы позволяют окружающей среде определять параметр. Например, теплокровные животные сохраняют постоянную температуру тела, тогда как холоднокровные демонстрируют широкий диапазон температур.

Речь не идёт о том, что конформационные организмы не обладают поведенческими приспособлениями, позволяющими им в некоторой степени регулировать взятый параметр. Рептилии, к примеру, часто сидят на нагретых камнях утром, чтобы повысить температуру тела.

Преимущество гомеостатической регуляции состоит в том, что она позволяет организму функционировать более эффективно. Например, холоднокровные животные, как правило, становятся вялыми при низких температурах, тогда как теплокровные почти так же активны, как и всегда. С другой стороны, регуляция требует энергии. Причина, почему некоторые змеи могут есть только раз в неделю, состоит в том, что они тратят намного меньше энергии для поддержания гомеостаза, чем млекопитающие.

Клеточный гомеостаз

Регуляция химической деятельности клетки достигается с помощью ряда процессов, среди которых особое значение имеет изменение структуры самой цитоплазмы, а также структуры и активности ферментов. Авторегуляция зависит от температуры, степени кислотности, концентрации субстрата, присутствия некоторых макро- и микроэлементов.

Гомеостаз в организме человека

Разные факторы влияют на способность жидкостей организма поддерживать жизнь. В их числе такие параметры, как температура, солёность, кислотность и концентрация питательных веществ — глюкозы, различных ионов, кислорода, и отходов — углекислого газа и мочи. Так как эти параметры влияют на химические реакции, которые сохраняют организм живым, существуют встроенные физиологические механизмы для поддержания их на необходимом уровне.

Гомеостаз нельзя считать причиной процессов этих бессознательных адаптаций. Его следует воспринимать как общую характеристику многих нормальных процессов, действующих совместно, а не как их первопричину. Более того, существует множество биологических явлений, которые не подходят под эту модель — например, анаболизм.

Другие сферы

Понятие «гомеостаз» используется также и в других сферах.

Актуарий может говорить о рисковом гомеостазе, при котором, к примеру, люди, у которых на машине установлены незаклинивающие тормоза, не находятся в более безопасном положении по сравнению с теми, у кого они не установлены, потому что эти люди бессознательно компенсируют более безопасный автомобиль рискованной ездой. Это происходит потому, что некоторые удерживающие механизмы — например, страх — перестают действовать.

Социологи и психологи могут говорить о стрессовом гомеостазе — стремлении популяции или индивида оставаться на определённом стрессовом уровне, зачастую искусственно вызывая стресс, если «естественного» уровня стресса недостаточно.

Примеры

  • Терморегуляция
    • Может начаться дрожание скелетных мышц, если слишком низкая температура тела.
    • Иной вид термогенеза включает расщеплениежиров для выделения тепла.
    • Потоотделение охлаждает тело посредством испарения.
  • Химическая регуляция
    • Поджелудочная железа секретирует инсулин и глюкагон для контроля уровня глюкозы в крови.
    • Лёгкие получают кислород, выделяют углекислый газ.
    • Почки выделяют мочу и регулируют уровень воды и ряда ионов в организме.

Многие из этих органов контролируются гормонами гипоталамо-гипофизарной системы.

Источник

Вода в растении

Содержание воды в растительных клетках и ее типы. Растения на 50 — 98% состоят из воды. Даже сухие части их в состоянии анабиоза (почвенные водоросли, семена, споры) содержат воду.

Вода в растительных клетках содержится в разных формах: химически связанная конституционная вода поддерживает состояние набухания цитоплазмы и других структур, вода в виде растворов присутствует в клеточном соке вакуолей и проводящей системе растений. Наименьшее количество воды, при котором растение способно поддерживать постоянство внутренней среды (гомеостаз), называется гомеостатической водой. У растений тех или иных экологических групп уровень гомеостатической воды разный: у видов засушливых мест — 25 — 27, у растений средних условий увлажнения — 45 — 60, у организмов в условиях обильного увлажнения — 65 — 70% от массы сырого вещества (П.А. Ген- кедь, 1982; Л.Г.Косулина и др., 1993 и др.).

Читайте также:  Вода 100 мл сколько граммов

Для характеристики степени насыщенности водой цитоплазмы растительных клеток и целого организма введено понятие гид- ратуры (оводненности) (Н. Walter, 1931). При насыщенной водяными парами атмосфере гидратура клетки или целого растения составляет 100%. Она снижается при понижении степени насыщения воздуха парами воды или при повышении концентрации осмотически активных веществ в клеточном соке.

Пойкилогидричность и гомойогидричность растений. В процессе эволюции у растений возникли разные приспособления к изменчивому водному режиму окружающей среды. По отношению к воде Г. Вальтер предложил разделить растения на две группы: пой- килогидрические (от греч. poikilos — различный) — переменно- увлажняющиеся и гомойогидрические (от греч. homois — одинаковый) — постоянно увлажненные, способные поддерживать относительное постоянство обводненности тканей (рис. 8.1).

Пойкилогидрические растения способны выносить сильное и длительное обезвоживание.

Водоснабжение пойкилогидрических растений осталось на довольно низком эволюционном уровне: они не регулируют водо-

Рис. 8.1. Изменение водного режима растений в связи с приспособлением их к наземному образу жизни; переход от пойкилогидричности к го- мойогидричности (по Н.Walter, 1967)

обмен, гидратура их клеток полностью зависит от внешних уело вий. Многие виды эпигейных, эпилитных и эпифитных мхов в разных ботанико-географических зонах и горных поясах настолько приспособились к неустойчивому водному режиму своих местообитаний, что пересыхание стало необходимым условием для их выживания. Так, эпигейный мох, обычный обитатель смешанных и лиственных лесов умеренной зоны Rhytidiadelphus triquetrus, погибает, если его в течение длительного времени держать сырым при температуре 37 °С. Способность к быстрому высыханию — хорошая защита от опасной для него высокой температуры: обезвоженный мох становится термоустойчивым (Р.

К группе пойкилогидрических растений относятся также некоторые папоротники и отдельные виды покрытосеменных растений, способные переносить сильное обезвоживание цитоплазмы и не имеющие морфологических приспособлений для защиты от иссушения. Эта своеобразная особенность цитоплазмы некоторых цветковых растений — вновь приобретенный адаптивный признак, свидетельствующий о большой экологической пластичности этой группы растений. Так, водное растение Chamaegigas inrepidus из семейства Норичниковые, живущее в мелких водоемах среди раскаленных гнейсовых холмов на юго-западе Афри

ки, может месяцами находиться в сухом состоянии (листья сложены, клетки деформированы), а затем оживать в течение нескольких минут после смачивания дождем. У пустынной осоки илак (Carexphysodes) (рис. 8.2), укорененной в поверхностном слое песка в Каракумах, листья при иссушении становятся ломкими (их можно растереть в порошок), но после смачивания они приобретают эластичность и зеленеют.

Гомойогидрические организмы свой водный режим регулируют. Подавляющее большинство наземных растений, в основном покрытосеменных, в процессе эволюции приспособились к поддержанию высоких значений гидратур в нестабильных условиях увлажнения.

Выработаны разные механизмы поддержания гомеостаза метаболических функций. Адаптации растений к резким изменениям водного режима имеют генетическую основу и осуществляются на разных уровнях: молекулярном, клеточном, орга- мизменном, биоценотическом. По Р. Библю (1965), суть гомойо- I идричности растений состоит в их анатомо-морфологических и физиологических особенностях, защищающих цитоплазму от сильного обезвоживания и создающих для нее свою собственную среду с более высоким, чем в атмосфере, водным потенциалом.

Источник

Adblock
detector